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Simulations of bypass transition
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Bypass transition in an initially laminar boundary layer beneath free-stream turbu-
lence is simulated numerically. New perspectives on this phenomenon are obtained
from the numerical flow fields. Transition precursors consist of long backward jets
contained in the fluctuating u-velocity field; they flow backwards relative to the local
mean velocity. The jets extend into the upper portion of the boundary layer, where
they interact with free-stream eddies. In some locations a free-stream perturbation to
the jet shear layer develops into a patch of irregular motion – a sort of turbulent spot.
The spot spreads longitudinally and laterally, and ultimately merges into the down-
stream turbulent boundary layer. Merging spots maintain the upstream edge of the
turbulent region. The jets, themselves, are produced by low-frequency components of
the free-stream turbulence that penetrate into the laminar boundary layer. Backward
jets are a component of laminar region streaks.

A method to construct turbulent inflow from Orr–Sommerfeld continuous modes
is described. The free-stream turbulent intensity was chosen to correspond with the
experiment by Roach & Brierly (1990). Ensemble-averaged numerical data are shown
to be in good agreement with laboratory measurements.

1. Introduction
Transition to turbulence by way of Tollmien–Schlichting waves is a slow process.

These waves are only weakly unstable in consequence of a subtle viscous mechanism;

near the upper branch they grow on the slow time scale δ/URe
2/5
δ∗ (Drazin & Reid

1995). Instability occurs at Reδ∗ ∼ 500, with transition taking place on the order of 20
times farther downstream. Any mechanism that produces growth on the inertial time
scale δ/U will overwhelm the orderly process of transition via Tollmien–Schlichting
waves. Under free-stream turbulence intensities of order 1% or more it is observed
experimentally that transition occurs rapidly, bypassing the Tollmien–Schlichting
route. Inertial-time-scale processes apparently come into play, but their origin and
nature are not at present known.

Bypass transition falls somewhere between turbulence and transition. It is stochastic
by nature, and so lies within the province of statistical fluid dynamics. It entails
rapid amplification of boundary layer perturbations, and so lies within the arena
of hydrodynamic instability. It is provoked by external perturbations, and so is an
instance of boundary layer receptivity. These various perspectives have led to attempts
on the problem via linear stability theory (Reshotko 1976), nonlinear stability analysis
(Li et al. 1998), turbulence modelling (Saville 1996), non-homogeneous rapid distortion
theory (Hunt & Carruthers 1990; Leib, Wundrow & Goldstein 1999), and the like.

Progress in this field has been hampered by a lack of detailed data and phenomeno-
logical information. The intent of the present paper is to contribute to the available
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data on bypass transition and to provide depictions of the eddies and interactions
that occur during the process of bypass transition. The particular case under study
here is transition induced by free-stream grid turbulence. Experiments were performed
on a parallel computing platform by direct numerical simulation (DNS) using the
incompressible Navier–Stokes equations. The qualitative and quantitative data to be
presented provide views of the process of coupling between free-stream turbulence and
boundary layer eddies. These computer studies complement laboratory experiments,
both in their degree of resolution and in their comprehensiveness.

1.1. Bypass mechanisms

There are three regions of concern to studies of bypass transition: the buffeted
laminar boundary layer; the region of intermittent turbulent spot formation; and the
fully turbulent boundary layer. In the buffeted laminar layer the skin friction is only
slightly elevated by the free-stream turbulence, and the boundary layer remains stable
to perturbations. In this region, shear filtering and non-modal, shear amplification
lead to elongated streaks in the u-component of velocity fluctuations.

In the intermittent region, localized perturbations trigger instabilities that ultimately
evolve into patches of irregular motion. Patches of irregular motion in the laminar
region will be termed turbulent spots. However, their character differs from the classic
Emmons spots (Van Dyke 1982); they are not downstream-pointing arrowheads. They
originate near the top of the boundary layer, being generated by free-stream eddies;
Emmons spots are usually stimulated by forcing at the wall. These distinctions have led
to the terminology ‘top-down’ and ‘bottom-up’ spots. Bypass transition occurs via top-
down spots. Once fully formed, these spots spread laterally and grow longitudinally.
They overtake the main turbulent region and thereby maintain its upstream edge.
That edge is irregular, consisting of juxtaposed zones of laminar motion, in which
laminar streaks are usually visible, and zones of fully turbulent motion.

In the last region of concern to bypass transition, the boundary layer is turbulent
across its entire span. The present numerical flow fields permit an examination of
low-intensity precursors to the appearance of turbulent spots; they enable the spatial
and temporal evolution of streaks in the laminar boundary layer to be visualized;
and they allow spots in the transitional boundary layer to be followed from inception
to absorption into the fully turbulent zone.

One of many outstanding issues in bypass transition is the receptivity process
(Reshotko 1976). Linear, high-Reynolds-number theory for quasi-parallel shear flow
shows that free-stream vortical perturbations do not couple to boundary layer modes
(Kerschen 1991). At finite Reynolds number, low-frequency modes can penetrate the
boundary layer, but they are generated by viscously decaying free-stream motions and
cannot lead directly to instability (Jacobs & Durbin 1998). The present simulations
show that once they enter the boundary layer, these low-frequency perturbations pro-
duce even lower frequency boundary layer modes. These very low-frequency perturba-
tions are then amplified and elongated in the streamwise direction by the shear. They
develop into streaks in the streamwise velocity contours. The streaks grow in strength
through the rapid-distortion mechanism of shear amplification (Phillips 1969). Essen-
tially, streamwise elongated perturbations, having small streamwise pressure gradients,
grow by vertical displacement of mean momentum. The magnitude of the velocity
perturbations seen in the present study sometimes reaches 25% of the free-stream
velocity, similar to levels seen in experiments of Alfredsson & Matsubara (1996).

Whether or not they play a role in bypass transition, the streaks in the laminar
boundary layer are an intriguing phenomenon. The formation of elongated contours
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of u-component velocity seems to be a ubiquitous feature of strongly sheared dis-
turbances (Lee, Kim & Moin 1990). Rapid-distortion theory shows how streamwise
elongated disturbances (k1 → 0) are subjected to prolonged growth of the streamwise
velocity perturbation (u′). But this theory does not select a spanwise wavelength;
hence, it does not predict boundary layer streaks per se.

A linear theory of streaks in laminar flow has been developed by Butler & Far-
rell (1992), Andersson, Berggren & Henningson (1999), Luchini (2000) and others.
These authors show that in a stable, viscous boundary layer disturbances ultimately
decay, even though they can experience substantial shear amplification. At any given
location certain disturbances have sustained the maximum net growth. These fall in
a narrow range of spanwise wavenumbers. Again, the disturbances are dominated
by the streamwise velocity component and are elongated in the streamwise direction
by the rapid distortion mechanism. However, now spanwise streaky structure is pre-
dicted because the largest perturbations are supposed to lie in the band of spanwise
wavenumbers that shows maximum amplification. The dominant wavelength of lin-
ear theory can be considered an estimate of the average spacing between the streaks
observed in the DNS: this estimate is consistent with the present results. However,
the DNS streaks are far from periodic or sinusoidal.

Streaks are almost certainly identical to so-called ‘Klebanoff modes’. The statistical
properties of the laminar region streaks in the present numerical simulation are in
good accord with experimental measurements of Klebanoff modes. But they are not
modes, in the sense of being eigenfunctions; they are disturbances forced by free-
stream turbulence and magnified by the boundary layer shear. Klebanoff modes are
an ensemble-averaged view of the instantaneous streaks.

What the connection of u-component streaks in the laminar layer to transition is,
has to date been, uncertain. It was recently proposed that spanwise periodic streaks
might undergo a secondary, sinuous instability, which subsequently would develop
into turbulent spots through a tertiary instability (Alfredsson & Matsubara 1996;
Elofsson, Kawakami & Alfredsson 1999). Our simulations showed no evidence of
sinuous, or other prefatory streak instability; the streaks usually persist right up to
the edge of the turbulent region. It is more likely that certain features of individual
streaks make the boundary layer receptive to perturbation by free-stream eddies.
Reddy et al. (1998) proposed that spanwise inflectional profiles are the origin of
breakdown. This mechanism was explored, but we found no evidence of it under the
conditions of the present simulations.

It appears that perturbations first enter the boundary layer in a region where a
streak takes the form of a long, intense ‘backward jet’ (Wu et al. 1999). The term
backward jet refers to the velocity relative to the mean local mean, U(x, y, z, t) −
Ū(x, y) < 0; the total velocity U(x, y, z, t) is not reversed in these structures. These jets
exist throughout the boundary layer, but they only couple to small-scale free-stream
turbulence when they are in its upper portion. In this role, streaks overcome the
sheltering effect of the mean shear by introducing three-dimensional, low-frequency,
unstable flow near the top of the boundary layer. This is acted on by free-stream
eddies.

Spot precursors are localized instabilities of a single one of these jets. The jets
are continually being perturbed, but instability occurs seldomly. Few localized distur-
bances are such that they grow rapidly into small-scale irregularities. When it occurs,
this irregular motion is first observed at fine resolution. It develops in strength and
eventually emerges on a coarser resolution as a ‘turbulent spot’. A similar phenomenon
was observed by Wu et al. (1999) in transition beneath periodic passing wakes. In
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that case elongated streaks were precluded by the finite wake width; instead, shorter
‘puffs’ were observed. Breakdown was associated with backward jets, seen high in the
boundary layer. Backward jets seem generally to be a link between free-stream eddies
and the boundary layer – at least with zero mean pressure gradient. The breakdown
is on isolated jets; streak spacing, per se, is irrelevant to transition.

The actual development of turbulence proceeds through the appearance of localized
regions of turbulence, or turbulent spots. These form when the irregular motion
triggered at the free-stream edge of the boundary layer cascades toward the wall.
Once formed, spots spread laterally and intensify as they propagate downstream.
Eventually they join onto a main turbulent region, thereby maintaining its upstream
edge. As the spots join the main region, they form juxtaposed zones of turbulent and
laminar flow, just upstream of a fully turbulent region. It appears that the growth
and merging are crucial features of the bypass mechanism proper. But the spots are
already developed regions of turbulence: by the stage at which the patch of irregular
motion can be called a turbulent spot, the transition mechanism is already well
underway. To understand the bypass route one must examine earlier stages, tracing
them back to the initial coupling between free-stream turbulence and the boundary
layer. Presumably that is where the crucial three-dimensional receptivity path occurs.
Here and in Wu et al. (1999) backtracking is facilitated by numerical simulation.
When a spot is observed, the simulation can be restarted at an earlier time and
intermediate solution fields saved.

The observations cited in the present paper bear subjective resemblance to results
of recent mathematical research by F. T. Smith and collaborators (Li et al. 1998, and
references therein). The fact that spot precursors originate in the outer boundary layer
is reminiscent of concepts of nonlinear critical layer modes. The rapid breakdown
of isolated jets is suggestive of explosive growth associated with inflectional profiles,
seen in nonlinear amplitude equations. Bowles & Smith (1995) consider a model
of boundary layer spots in which the mean profile is represented by a linear shear
joined to a constant free-stream velocity. Perturbations then consist of vorticity waves
propagating on the vorticity discontinuity at the top of the boundary layer. The front
of the spot is then composed of short waves, while the rear contains long, slower
waves. This seems to provide a simple model for the top-down spots seen in our
simulations.

The localized receptivity mechanism of Tam (1978) is very likely to be relevant to
the initial coupling to free-stream disturbances. It has not escaped our attention that
various stages of the transition mechanism observed in the present simulations can be
connected to a wide range of analyses. In most cases the connections are subjective.

1.2. Bypass transition simulation

The present simulations of bypass transition provoked by free-stream turbulence use
the methodology proposed by Grosch & Salwen (1978) and by Jacobs & Durbin
(1998) to synthesize free-stream turbulence. The free-stream turbulence is expanded
as a sum of spanwise and temporal Fourier modes, times vertical Orr–Sommerfeld
modes. The Orr–Sommerfeld modes consist only of the continuous spectrum. It
was first proposed by Grosch & Salwen that the continuous spectrum provides a
natural basis for free-stream turbulence. Indeed, far above the boundary layer the
continuous spectrum becomes a Fourier spectrum. Hence, kinematic synthesis of
inflow turbulence proceeds in the same manner as is used to initiate grid turbulence
simulations (Rogallo 1981). The present effort is the first to use the Orr–Sommerfeld
continuous spectrum to create synthetic free-stream turbulence.
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This method of inflow synthesis avoids the need to compute the evolution of grid
turbulence upstream of the leading edge of the flat plate, or indeed, to compute the
flow round a sharp leading edge, as was done by Rai & Moin (1993). The expansion in
Orr–Sommerfeld modes enables the computation to be done in a rectangular region,
with a lower no-slip wall and with a Blasius boundary layer introduced at the inlet.
The advantages are that the computational domain is shortened, by avoiding the
leading edge and starting with a finite thickness boundary layer, and that a more
efficient computational algorithm can be used because the lower wall extends over
the whole streamwise domain.

In the opening paragraph of their review on direct simulations of the Tollmien–
Schlichting route to transition, Kleiser & Zang (1991) allude to “transition induced
by mysterious ‘bypass mechanisms’ ”. Despite theoretical speculations cited above,
bypass mechanisms have remained somewhat mysterious. The potential of direct
simulation to shed light on the subject has remained largely untapped. Simulations
of wake-induced transition by our group (Wu et al. 1999) provide intriguing views of
the process.

Low-resolution simulations of transition under free-stream turbulence were per-
formed by Yang & Voke (1995). Their grids were far too coarse to explore bypass
mechanisms. A subgrid model was used in some of their computations; others were
run with no model. In either case the large subgrid dissipation would prevent proper
resolution of streaks, spots and their precursors. The primary conclusion of Yang
& Voke (1995) was that the normal component of free-stream intensity dominates
the interaction with the boundary layer. This was surmised from a thought experi-
ment, in which the inlet turbulence was either given only a u-component or only a
v-component. The former did not provoke transition, the latter did. The dominance
of the v-component is a significant insight.

A proper DNS of transition under free-stream turbulence was performed by Rai &
Moin (1993). Their simulation started upstream of the leading edge of a flat plate. The
long computational domain imposed excessive grid requirements. This was addressed
by using a three-zone grid. A coarse grid was used in the upstream and exit zones.
The coarse exit-zone grid was intended to suppress turbulence fluctuations prior to
imposing the outflow boundary condition. In preliminary tests, we found no need
for such a sponge region with the present numerics – perhaps this is because our
simulations are incompressible while Rai & Moin (1993) used a compressible code.
In their main zone, Rai & Moin (1993) observed turbulence-induced transition. They
found that the x-dependence of Cf was quite sensitive to grid resolution. In their
most resolved computation it rose too abruptly, to a level well above the turbulent
correlation. They estimated that a grid spacing of ∆x+ ' 12 and ∆z+ ' 6 was required;
due to computational expense their finest resolution was ∆x+ ' 28 and ∆z+ ' 10.
Based on the present simulations, the erroneous Cf(x) curve computed by Rai &
Moin (1993) was probably a consequence of inadequate streamwise resolution. Fields
of instantaneous vorticity were discussed in terms of orderly transition mechanisms:
detached shear layers, one and two-spike stages and the like. No evidence of the
bypass mechanisms discussed herein was seen in their visualizations.

2. Numerical method
The incompressible Navier–Stokes equations were solved by the fractional step

algorithm described in Akselvoll & Moin (1996). This is a central difference, pressure
correction method, solved on a staggered grid. Convection and diffusion in the
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Figure 1. Grid resolution on 1/32 of streamwise domain. (a, b, c) Refinement in x, y and z,
respectively.

horizontal plane are treated explicitly and solved by third-order Runge–Kutta time
stepping. Diffusion is implicit in the vertical direction and convection is linearized
to make it partially implicit. The implicit terms follow the Crank–Nicholson time-
stepping scheme. The computer code is a parallel implementation of this algorithm
by Pierce & Moin (1998). Computations were done on 128 processors of an SGI
Origin 2000. A full simulation required on the order of 500 hours of CPU time per
processor.

The flow domain was a rectangular box of relative dimensions 15.5× 1× 0.75; or,
in units of the inlet 99% boundary layer thickness, δ0, it is 620 × 40 × 30. The grid
was uniformly spaced in the x- and z-directions and clustered near the wall in the
y-direction. The uniform grid spacing in the horizontal plane enabled the Poisson
equation for the pressure to be solved directly by fast Fourier transforms in x and z,
and tridiagonal matrix inversion in y.

The top boundary condition was U = 1, W = 0 and V = dδ∗Blasius/dx; the laminar
Blasius boundary condition on V was used throughout the domain. Capital letters
here denote the total velocity. The Blasius condition was used to obtain very accurate
growth rates of Tollmien–Schlichting waves in the laminar region. It was found that
setting V = 0 or ∂yV = 0 produced almost identical mean velocity and skin friction
to those obtained with the Blasius boundary condition.

Spanwise periodicity was imposed. Studies conducted throughout the course of
this work verified that the width of the domain was great enough to avoid spurious
correlations. It especially was verified that the average streak spacing in the laminar
region was uninfluenced by the lateral domain size.
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The primary solutions presented herein were on a 2048 × 180 × 192 grid in x, y
and z. This grid gives ∆x+ of 11.7 and ∆z+ of 6.0 at the skin friction maximum;
in other words, this is the coarsest resolution in + units. It was found that coarser
streamwise resolution caused the skin friction to slightly overshoot the turbulent level
after transition. Streamwise velocity fluctuation was the most sensitive indicator of
under-resolution. Grid refinement studies were done on coarser grids to ascertain that
the final grid provides satisfactory numerical accuracy. Figure 1 compares u′ on the
final grid to a finer and to a coarser grid. This figure shows the approach to grid
independence. In order to study the effect of grid resolution these computations were
on 1/32 of the streamwise domain: for instance the ‘4096’ point computation actually
used 128 points so that the ∆x corresponded to 4096 points on the full domain. Each
portion of figure 1 contains three curves: the solid lines are the final grid; the dashed
line is finer; and the dotted line is coarser. The greatest sensitivity is to the spanwise
resolution. The simulation grid appears to be satisfactory in all directions. Further
verification of numerical accuracy can be found in Jacobs (1999).

2.1. Inflow generation

In the free stream the turbulence is isotropic. Apart from its interaction with the
boundary layer, it simply decays with downstream distance. Isotropic grid turbulence
can be simulated by a sum of Fourier modes with random amplitudes:

u(x) =
∑
k

û(k) eik·x. (2.1)

As an inlet condition, k1x1 is replaced by −ωt, invoking Taylor’s hypothesis and
ignoring streamwise decay. With this replacement

u(x = 0, y, z, t) =
∑
ky ,kz ,ω

û(ky, kz, ω) ei(kyy+kzz−ωt). (2.2)

For the boundary layer simulation this has to be modified to accommodate the wall.
To this end, the y-direction Fourier modes are replaced by an alternative, complete
basis φky (y):

u(x = 0, y, z, t) =
∑
ky ,kz ,ω

û(ky, kz, ω)φky (y) eikzz e−iωt. (2.3)

An appropriate basis for the wall-normal component of velocity is the Orr–Sommerfeld
modes.

The general solution to the Orr–Sommerfeld equation in an unbounded flow can
be decomposed into a sum of a finite number of discrete modes plus a continuum
of modes. The discrete modes decrease exponentially with y in the free stream. They
are not generated by free-stream turbulence. These components are not included in
the inflow representation because the interest here is in bypass transition caused by
external, vortical disturbances.

The continuum eigenfunctions solve

(αU − ω)(φ′′ − α2φ)− αU ′′φ =
−i

R
(φiv − 2α2φ′′ + α4φ) (2.4)

for an eiαx-dependent eigenfunction. R is the Reynolds number. Equation (2.4) is
subject to the asymptotic condition that φ is bounded, but not zero, at infinity. At
the wall, y = 0, φ = φ′ = 0. These boundary conditions define an eigenvalue problem
for the complex function φ and the complex eigenvalue α. An algorithm to solve
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Figure 2. Some continuous modes of the Orr–Sommerfeld equation.

(2.4) subject to boundedness is described in Jacobs & Durbin (1998). As y → ∞,
the bounded solution behaves as φ ∝ A eikyy + B e−ikyy and the eigenvalue is found
explicitly to be

α =
i

2

[√
R2 + 4(k2

y − iRω)− R
]
. (2.5)

The non-dimensionalization is to U∞ = 1. As ω/R → 0, α → ω. Typical continuum
modes are plotted in figure 2. This figure shows how the modes are sinusoidal in
the free stream, but are damped rapidly inside the boundary layer. This damping
is caused by the mean shear flow (Hunt & Durbin 1999). Low-Reynolds-number or
low-frequency modes are able to enter the sheared region; Jacobs & Durbin (1998)
suggest that the penetration depth varies as approximately (ωR)−0.13. The small mode
amplitude inside the boundary layer embodies the concept of shear sheltering.

The v-component of inlet free-stream turbulence was created by summing Orr–
Sommerfeld modes:

v|x=0(y, z, t) = −∑
ω

∑
ky

∑
kz

A(ω, ky, kz) i
√
ω2 + k2

z φ(ω, ky, R; y) eikzz e−iωt. (2.6)

If the inlet disturbance were a sum of oblique Orr–Sommerfeld modes then u and
w would be analogous to the above, with i

√
ω2 + k2

z φ replaced by −φ′ cos γ and
−φ′ sin γ. The wave obliqueness suited to the present usage is

tan γ =
kz

ω

in which ω/U∞ plays the role of a streamwise wavenumber and U∞ is normalized
to unity. However, oblique Orr–Sommerfeld waves contain only horizontal vorticity.
In order to represent isotropic free-stream turbulence it is necessary to add vertical
vorticity. In a linear analysis inside the flow domain, the vertical vorticity would be
obtained by solving Squires’ equation. For only representing the inlet disturbance, the
vertical vorticity can be specified more simply by adding another term proportional
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to φ′ to the horizontal velocities. The forms

u(y, z, t) =
∑
ω

∑
ky

∑
kz

φ′(ω, kz, R; y)
[
A(ω, ky, kz) cos γ + B(ω, ky, kz)kz

]
eikzz e−iωt

w(y, z, t) =
∑
ω

∑
ky

∑
kz

φ′(ω, kz, R; y)
[
A(ω, ky, kz) sin γ − B(ω, ky, kz)ω

]
eikzz e−iωt


(2.7)

were used. The effective Reynolds number and true Reynolds number are related by
R = Re cos γ due to the wave obliqueness to the mean flow. In the main simulation
described herein, the inlet Blasius layer had Rθ = 106; correspondingly Rx = 2.55×104.
The Orr–Sommerfeld modes were computed for this profile.

The construction (2.7) would satisfy incompressibility if the x-dependence were eiωx.
Continuous modes inside the flow domain behave as eiαx with α given by (2.5), but
α ≈ ω to a high degree for the modes of present interest. The objective of this inflow
construction is to introduce disturbances smoothly into the flow, in order to minimize
the distance over which they adjust to a sensible representation of grid turbulence.
The present technique was found to be very effective. Of course incompressibility is
satisfied exactly inside the flow domain; (2.7) and (2.6) serve only to produce an inlet
perturbation. Computations of individual modes were in excellent agreement with
(2.5) (Jacobs 1999).

In the free stream φ ∼ eikyy and the inflow representation can be expressed as
three-dimensional Fourier amplitudes

û =
ikyωA√
ω2 + k2

z

+ Bkz, v̂ = −i
√
ω2 + k2

zA, ŵ =
ikykzA√
ω2 + k2

z

− Bω. (2.8)

The terms containing A can be thought of as the Orr–Sommerfeld modes and those
containing B as Squire modes.

An isotropic spectrum was generated by letting (Rogallo 1981)

A = Feiθ1 cos δ,

B = F

√
ω2 + k2

z + k2
y

ω2 + k2
z

eiθ2 sin δ,

 (2.9)

where θ1, θ2 and δ are uniformly distributed random angles. The functional form of
F defines the energy spectrum through

F =

√
E(ω2 + k2

z + k2
y)

4π[ω2 + k2
z + k2

y]
2
. (2.10)

If ω is synonymous with kx then multiplying (2.8) by its complex conjugate, averaging
and using (2.9) gives the isotropic energy spectrum tensor

ûiûj =
E(|k|)
4π|k|4 (|k|2δij − kikj). (2.11)

The turbulent intensity, Tu, is given by

Tu2 = u2
0 =

2

3

∫ ∞
0

E(k) dk. (2.12)

The simulations in this paper are for inlet Tu = 0.035 and, in § 4, for Tu = 0.07. The
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spectral shape

E(k) = u2
0

L5k4

C[1 + (kL)2]17/6
(2.13)

was used, where L is a turbulence length scale. The normalization constant is

C =
2

3

∫ ∞
0

x4

[1 + x2]17/6
dx =

√
π Γ (1/3)

4Γ (17/6)

and L is related to the integral scale L11 ≡ ∫ ∞0 u(x)u(x+ r)/u2
0 dr by

L =
55C

9π
L11.

3. Results
The goal of these numerical simulations is to gain insight into the bypass transition

process, not necessarily to match previous experiments. As fully resolved numerical
solutions to the Navier–Stokes equations, direct numerical simulations are verified
by grid refinement tests. However, comparisons to experimental data can bolster
confidence in the computations. For this reason the inlet turbulent intensity was
chosen in correspondence to case T3a of Roach & Brierly (1990). It would be virtually
impossible to reproduce the details of the laboratory experiment, but a reasonable
approximation was obtained. The inlet turbulence intensity of the simulation was
3.5%; it decayed to 0.6% by the exit. A second simulation with 7% inlet turbulence
was also performed; a few results from this second case will be presented in § 4 and
compared to case T3b of Roach & Brierly (1990).

An objective of the method of inflow simulation was to produce nearly isotropic
grid turbulence far above the boundary layer. The isotropic relation u′ = v′ = w′
was met to within 10% inside the flow domain. The free-stream turbulence intensity
follows the decay law Tu ∝ (x+ x0)

−n with n ≈ 0.71. The integral length scale

Lk = −k
3/2

dxk
(3.1)

normalized by local boundary layer (99%) thickness versus Rex is shown in figure 3,
along with Tu/Tuin. The integral scale grows as x0.29. The boundary layer thickness
grows more rapidly, so the ratio plotted in figure 3 decreases with x. Transition to
turbulence begins at Rex ≈ 1.5 × 105. At that point the turbulence integral scale is
about one half of the 99% boundary layer thickness. While these properties are not
identical to the T3a experiment, they are sufficiently close that a fair comparison can
be made.

The main simulations will be presented in three subsections: the first addresses
single-point, Reynolds-averaged data; the second is on instantaneous fields; and the
third presents space–time spectra. The first section is primarily a comparison to
experiment. The second and third contain new results on the mechanics of bypass
transition.

3.1. Reynolds-averaged fields

A plot of skin friction coefficient versus distance or Reynolds number provides a good
overview of the onset and length of transition. The development of the skin friction,
momentum thickness and shape factor are presented in figure 4. Data of Roach &



Simulations of bypass transition 195

2.0

0 1 2
Rex

3 4 5

1.5

1.0

0.5

(×105)

Figure 3. Free-stream decay. , Tu/Tuin; ——, L/δ.

1000

800

600

400

200

Reθ

2.6

2.4

2.2

2

1.8

1.6

1.4

H

T3a
Case 1

Case 1
T3a

0 1 2 3 4 5
(×105)

0 200 400 600 800 1000

Rex

0.008

0.006

0.004

0.002

0

Cf

T3a
Case 1

0 200 400 600 800 1000

Reθ

Turbulent

Blasius

Reθ

Figure 4. Momentum thickness, form factor and skin friction compared to data
from Roach & Brierly (1990).

Brierly (1990) are included in the figure. It can be seen that the DNS and experiment
develop similarly. If the onset of transition is defined as the point where Cf reaches
its minimum and the completion of transition is where Cf attains its maximum, then
both DNS and experiment show the onset to occur at Reθ ≈ 300 and transition to
be complete at Reθ ≈ 600. The DNS is slightly later than the experiment in both



196 R. G. Jacobs and P. A. Durbin

30

20

10

0

U +

10–1

Log law

100 101 102 103

y +

Figure 5. The evolution of mean velocity profiles through the laminar to turbulent transition. Data
of Roach & Brierly (1990). e, Rθ = 323; �, Rθ = 385; 4, Rθ = 456; 5, Rθ = 539; �, Rθ = 980.

3

2

1

u+

300

0 50 100 150 200

y +

1.2

0.8

0.4

w +

0 100 200 400

y +

v+

300

0 100 200 300 400

y +

� 0

–0.2

–0.4

–0.6

–0.8

–1.0

uv+

0 100 200 400

y +

1.0

0.8

0.6

0.4

0.2

Figure 6. The evolution of u, v, w and uv Reynolds stress components compared to data of Roach
& Brierly (1990). e, Rθ = 177; e, Rθ = 225; �, Rθ = 323; �, Rθ = 385; 4, Rθ = 539; �, Rθ = 897.

respects, but the slopes dCf/dx in the transition region are quite similar. The Rai &
Moin (1993) DNS showed a rather longer transition length and a more shallow slope
than experiment. That was probably due to inadequate streamwise resolution.

Mean velocity profiles at various locations in the transitional zone are compared
to experimental data in figure 5. The evolution from a Blasius profile to a turbulent
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profile, with a nascent logarithmic region, is portrayed by both sets of data. Other
measurement stations are available for the experiments and complete fields are
available for the simulations. The agreement at other locations was similar to those
included in figure 5.

Figure 6 shows the development of the Reynolds stress components through tran-
sition. The streamwise intensity profiles agree quite well with experimental data. v′
and w′ show a discrepancy with the laboratory data at the lowest Rθ for y+ < 50. The
experimental data at Rθ = 225 for the wall normal component, v′, show a curious
peak at y+ ≈ 25. No evidence of such behaviour is seen in the computation. Aside
from this, the general evolution of the Reynolds stress tensor is the same in the DNS
and experiment.

These plots in + units give a false impression that the near-wall peak in u′ remains
at a fixed location through transition. In fact the profile at Rθ = 177 peaks near
the middle of the boundary layer, while the others peak near the wall. Figure 7
distinguishes this behaviour. Here the profiles are plotted in outer-region scaling,
u′ versus y/δ (throughout this paper, δ is the 99% boundary layer thickness). The
profiles at Rθ = 456 and 711 have the aspect of turbulent flow. The profile at Rθ = 177
has the shape of so-called ‘Klebanoff modes’ (Kendall 1991). As was discussed in
the introduction, these are not modes at all, but simply terminology to categorize
certain experimental data (Leib et al. 1999). Upstream of Rθ ≈ 400, when the u′
profiles are plotted in the form u′/u′max versus y/δ they collapse inside the boundary
layer to the same Klebanoff mode form that is seen at Rθ = 177 in figure 7 (Jacobs
1999). Profiles of u′/u′max peak at y/δ ≈ 0.4 and have the same shape as y∂yU
(Goldstein & Wundrow 1998). These profiles are a Reynolds-averaged signature of
the streaks discussed in § 3.2. There it is observed that the lateral streak spacing also
is consistent with measurements of Klebanoff modes. Whether Klebanoff modes are
a precursor to transition has been a matter of speculation. It seems clear from the
results presented in the next section that they have at most a tangential relation to
bypass transition. Individual, instantaneous jets in the perturbation velocity field are
more likely to be the receptivity path coupling small-scale free-stream turbulence to
the boundary layer. That coupling occurs very intermittently; it cannot be attributed
to the ensemble-averaged notion of Klebanoff mode profiles.



198 R. G. Jacobs and P. A. Durbin

0.5

0.4

0.3

0.2

0.1

0

0 200 400 600 800 1000
Reθ

∫P
 d

y

0.6

0.4

0.2

0

∫ε
 d

y

0 200 400 600 800 1000
Reθ

1.5

1.0

0.5∫P
 d

y/
∫ε

 d
y

0 200 400 600 800 1000
Reθ

Figure 8. Integrated production, dissipation and their ratio. Integration over: , boundary
layer; , free stream; , entire domain.

As the boundary layer begins to transition, the rate of turbulent energy production
rises. One way to represent this is by integrating production across the boundary layer.
Integrated production is plotted in figure 8. The rate of energy dissipation also rises
through transition, as shown in the figure. The integrated dissipation must be divided
into a contribution from the boundary layer and a contribution from the free stream.
The latter increases with the vertical domain size. The ratio of integrated production
to integrated dissipation within the boundary layer falls through the transition region,
as seen in figure 8. A hallmark of transition is the creation of small-scale dissipative
eddies, which is why

∫
P dy/

∫
ε dy falls. After transition this ratio is nearly unity.

3.2. Instantaneous fields

A curious phenomenon occurs in the laminar boundary layer upstream of the onset
of transition: long streaks of u-component velocity perturbations are observed. These
are seen in plan view in figure 9(a). The dark zones are regions where u′ < 0; these
intense ‘negative jets’ are compensated by broader regions of u′ > 0. Figure 9 shows a
segment of the computational domain within the transition region. It spans Rθ = 300
to 687; the entire domain is Rθ = 106 to 1000. The streaks persist into the intermittent
region, where laminar and turbulent zones are juxtaposed. They continue to be seen
all the way through the transition region, only terminating where the boundary layer
becomes turbulent across the full span, at the right-hand side of the figure.

A patch of irregular motion is observed to develop towards the left-hand side of
the upper figure, in the midst of the streaks. The time scale, T , used to label figure 9
is the interval required for the turbulent spot to travel from the location of minimum
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skin friction to the location of maximum skin friction. This can be thought of as a
spot lifetime; the particular sequence shown was selected to illustrate the life of a
turbulent spot.

Consistent with rapid distortion theory, streaks are seen primarily in the u′ compo-
nent; the v′ component highlights the spots. The contours of v′, shown in figure 9(b),
give a clearer impression of the localized nature of turbulent spots. These patches of
irregular motion do not arise from a sinuous instability of a pattern of streaks; rather
they appear spontaneously in a compact area. They expand rapidly in the cross-stream
and streamwise direction. The front of the irregular patch propagates more rapidly
than the rear, and soon overtakes the downstream fully turbulent boundary layer.
The ragged edge of the turbulent zone, that can be seen in figure 9(b), is maintained
by spots overtaking the main turbulent region. Without this sustenance, the turbulent
zone would convect out of the computational domain, leaving a laminar, perturbed
boundary layer. In time-lapse visualizations, the upstream edge of the turbulent region
is seen to move slowly downstream, then to jump back as it is caught by a spot.

The spot planforms, especially that at t/T = 0.33, bear similarity to those obtained
by Bowles & Smith (1995) through application of stationary phase to a packet of
waves on a vorticity discontinuity. The lateral edges of the spot form as caustics.
Toward the rear of the spot the predicted angle of the caustics is 19◦, which is larger
than observed. The simplifications and approximations in the analysis could well
account for descrepancies. This type of analysis for top-down spots seems quite apt.

The localized nature of spots can be seen even more clearly in a plot of instanta-
neous skin friction versus Rex through the middle of the spot (figure 10). The flow is
laminar on either side of the instantaneously elevated pulse at Rex ∼ 2.2 × 105. The
ambient boundary layer seems to be quite stable upstream of Rex ∼ 3× 105. Behind
the spot (i.e. upstream) the instantaneous Cf falls below the laminar level. This is
probably due to the spot lying in a streak with u′ < 0, rather than an effect of the
spot per se.

An ensemble-averaged skin friction curve is included in figure 10. It shows that the
smooth increase of Cf through the region 1.5× 105 < Rex < 3× 105 is a consequence
of averaging a highly intermittent signal.
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Figure 11. A longer section of the domain: Rθ = 136 to Rθ = 687. (a) u contours, (b) v contours.
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Figure 12. Horizontal sections through the free stream and the boundary layer. The sections are:
(a) in the free-stream, (b) at y ∼ δ and (c) at y ∼ 1

3
δ where δ is the 99% thickness at Rθ = 250.

Figure 11 portrays a longer portion of the flow domain than figure 9, extending from
the laminar region near the inlet into the turbulent boundary layer. Relatively small-
scale fluctuations are seen near the inlet. They probably have two sources. The oblique
modes imposed at the inlet have an effective Reynolds number Re cos γ. Modes with
large kz correspond to γ ≈ 90◦. Low-Reynolds-number Orr–Sommerfeld, continuous
modes penetrate deep into the boundary layer (figure 2). Hence, highly oblique modes
are seen near the inlet, but they decay rapidly. The other source of small-scale inlet
boundary layer perturbations is that the form of oblique Orr–Sommerfeld modes,
eiα(x cos γ+z sin γ) with α complex, is not periodic in z. This is inconsistent with the
specified spanwise periodic fluctuation at x = 0. A rapid adjustment takes place and
this causes small-scale motions, that decay very quickly.

The downstream flow clearly is responding to the low-frequency components of
the overlying free-stream turbulence, without contamination by inlet effects. It will be
shown subsequently (figure 16) that streaks are part of this response to large-scale
external eddies. The dominant streak spacing is seen to originate where these eddies
penetrate the upper half of the boundary layer.

Figure 12 consists of u-velocity fluctuation contours in planes parallel to the wall:
(a) is in the free stream, (b) is at the upper edge of the boundary layer, and (c) is
near the surface. A striking qualitative change from nearly isotropic turbulence in
the free stream to highly elongated streaks near the wall is observed as the plane
moves down through the boundary layer. This is an illustration of shear sheltering.
The rationale presented in Jacobs & Durbin (1998) for this phenomenon is that
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Figure 13. Spanwise correlation function, Ruu(∆z).

modes of the continuous spectrum of the Orr–Sommerfeld equation are practically
zero inside the boundary layer, unless the frequency is low. The small scales in the
free stream are prevented by the mean shear from perturbing the boundary layer.
The sheltering phenomenon is also known in receptivity theory (Kerschen 1991):
qualitatively, disturbances convected with the free-stream velocity do not couple to
the slower fluid within the boundary layer.

In the buffeted boundary layer, viscous stresses are able to withstand the free-stream
perturbations and the boundary layer remains laminar. The elongated streaks origi-
nate through an elaboration of shear sheltering. The shear might better be thought of
as filtering free-stream disturbances, letting low-frequency components of the external
turbulence penetrate the boundary layer, while expelling higher frequencies (Jacobs
& Durbin 1998; Hunt & Durbin 1999); Alfredsson & Matsubara (1996) contains
experimental time traces that also are consistent with shear filtering. Upon entering
the boundary layer, low-frequency disturbances are amplified by the mean shear (An-
dersson et al. 1999). The energy spectrum shifts toward even lower frequencies as
nonlinearity produces difference frequencies.

Streamwise elongated streaks emerge quite generally as a feature of zero-pressure-
gradient laminar boundary layers buffeted by free-stream eddies. As mentioned in
connection with figure 7, streaks appear to be identical to what have been called
Klebanoff modes (Kendall 1991). There we commented that the u′ versus y/δ profiles
have the same form as seen in experiments. Figure 13 shows the spanwise correlation
u(z + ∆z)u(z)/u2 at y/δ = 0.5. If the averaged streak spacing is defined as twice the
distance to the first minimum of the correlation function, then this spacing is ≈ 1.2δ.
That is consistent with experimental measurements (Westin et al. 1994). The dashed
line in figure 13 shows that the spanwise structure is absent in the free stream.

Direct simulations have made a significant impact on our understanding of the
process of bypass transition by enabling the early stages, before turbulent spots
appear, to be explored. By the time that spots appear, a local region has already
broken down to turbulence. Prior to that stage laminar, highly sheared flow patterns
appear in the form of the backward jets cited previously. Irregularities similar to
Kelvin–Helmholtz instability are triggered on these shear layers and at some late
stage of development they become localized turbulent patches.
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Figure 14. Backward jets in the (x, y)-plane. Time sequence showing the evolution of the spot
precursor via vectors. The vertical scale has been expanded by a factor of 2; vector profiles are
separated by 6 grid points. The viewing window moves at 0.51U∞ in order to keep the perturbation
in the picture. The final view is of the region 271 < Rθ < 344. From top to bottom, t/T = −0.4,
−0.3, −0.2, −0.1, 0.

Figure 14 illustrates the evolution of a perturbation on a backward jet as it appears
in the present simulation. The background contours show v: v > 0 is light, v < 0
is dark. The y-axis has been magnified two times for the purpose of display; the
impression of anisotropy in the free stream is an artifice of this distortion. The spot
that is seen in figure 11 corresponds to a time somewhat beyond those shown in
figure 14: the sections of figure 14 are labelled with negative times to indicate that
they show precursors to the emergence of spots in figure 9; at t/T = 0 a nascent
spot fills the left, central region (x/δ0 ≈ 190–210) of the boundary layer in the lowest
panel of figure 14. After its initiation, this region of irregular motion grows rapidly
and becomes visible in coarse-level contour plots.

The flow region viewed in figure 14 moves downstream at 0.51U∞ in order to keep
the perturbation in the picture. The final image spans the region 271 < Rθ < 344; the
previous images cover the ranges 252 < Rθ < 324, 232 < Rθ < 306, 211 < Rθ < 289,
and the inital image spans the region 188 < Rθ < 271 – essentially the right-hand
edge moves in increments of ∆Rθ ≈ 20.

The line across each of the plots shows where y = δ(x). A small region of flow
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upward across that line is seen in the velocity vectors at x/δ0 ≈ 112, y ≈ δ of the top
frame. This has moved to the middle of the next frame. It is the disturbance which
continues to grow, filling the boundary layer with a strip of irregular velocity vectors
at t/T = 0.

Both here and in Wu et al. (1999) the jets that precede turbulent spots are located
in the upper part of the boundary layer. It appears that backward jets constitute
low-speed fluid that was lifted from near the wall. The numerical data show a
correspondence between negative jets and upward v velocity. In the initial stages, that
upwelling appears to be associated with large-scale free-stream eddies. The spanwise
spacing seems to be filtered from the external perturbation.

Forward jets are seen close to the wall. These can be quite intense, reaching 25%
of the free-stream velocity. They are generally broader in the z-direction than the
negative jets, possibly because they are produced by downward flow which is blocked
by the wall. Forward jets seem never to be the seat of breakdown. This is further
evidence that the jet must lift into the outer region of the boundary layer and be
disturbed by small-scale free-stream turbulence in order to breakdown.

One might question whether the eruption portrayed in figure 14 arose out of the
interaction of a jet with an external eddy, or whether it is a feature of an instability,
that could be stimulated by any infinitesimal perturbation. The answer to this question
is found from the earlier time history.

In the uppermost views of figure 14, a white patch is seen in the free stream at
x/δ0 ≈ 112, y ≈ δ, where the velocity vectors show the upward eruption across
δ. By tracing that patch to earlier times, it was seen to exist and to be located in
the free stream prior to the eruption. It can be surmised that the breakdown to
irregular motion seen toward the bottom of this figure originated where a backward
jet was highly perturbed by a free-stream eddy. The complex process by which free-
stream turbulence enters the boundary layer is twofold: firstly, low-frequency eddies
produce a lifted, backward jet; secondly, smaller scales disrupt that jet. Smaller scale
motions then develop within the jet shear layer. This and similar visualizations are
evidence that the breakdown occurs only near the top of the boundary layer. External
disturbances do not penetrate the boundary layer; rather, the backflow jet rises to the
boundary layer edge, then it bursts. The nonlinear theory of Li et al. (1998) envisions
a breakdown of this form.

Of the jets observed, most do not spawn spots. We have not discovered a definite
qualitative signature of those jets that become spot precursors. They must be of
sufficient amplitude and they must be located in the outer portion of the boundary
layer. Perhaps a threshold level of shear is required; perhaps a threshold level of
perturbation is needed. Clearly it is not simply a matter of the jet profile implying
instability; there is also a requirement of coupling to free-stream eddies. The backward
jet provides a local receptivity path; it also provides an inviscidly unstable, inflectional
profile. When the jets lift into the upper half of the boundary layer, they are no longer
sheltered by the shear from small-scale free-stream turbulence. This seems to be an
element of their responsiveness. However, the higher disturbance simulations in § 4
suggest that a threshold level of perturbation still is needed to stimulate rapid
breakdown into a patch of turbulence.

A plan view of a portion of the computational domain contains backward jets
dispersed throughout the buffeted laminar boundary layer (figure 15). Views at later
times reveal that most of them do not develop turbulent spots. The location of the jet
in figure 14 that does produce a spot is indicated by an arrow at the left of figure 15.
Figure 15 provides data on the three flow components in the plane visualized. The
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Figure 15. Velocity vectors in the (x, z)-plane. The constant y-plane corresponds to y/δ = 0.6 at
the left-hand edge and y/δ = 0.53 at the right. The region shown is from Rθ = 163 to Rθ = 239.
The v component is contoured in the background.

dark background shows where v′ is negative; the light background is where it is
positive. Negative jets are usually in a region of v > 0. A flow divergence in the plane
seems to be associated with the localized breakdown.

Distinct asymmetry is exhibited between narrow, intense jets of negative u′ and
broad, weak regions of positive u′. It seems to be critical to the overall process of
transition. Asymmetry can be rationalized by arguing that upward convection of low-
momentum fluid causes the negative jet. As this fluid lifts up it has an increasingly
intense negative velocity relative to the ambient mean velocity. Jets in the outer
portion of the boundary layer are predominantly negative because upward motion
produces them and moves them there. Positive jets form in downward motion, and
are seen near the wall in figure 14.

The side and top views presented so far provide compelling evidence of that
transition originates in the upper boundary layer. The final perspective is the end
view. End views looking downstream are contained in figure 16. The horizontal axis
is labelled in units of the inlet boundary layer thickness (δ0); a useful conversion
factor is the corresponding inlet Reynolds number, Rδ0

= 798 or Rx = 2.55 × 104.
These panels show how negative jets originate near the wall where large-scale free-
stream eddies penetrate the boundary layer. The shading contours the u-component
of velocity. Positive jets (white patches) stay near the surface. Negative jets (dark)
lift up, sometimes moving over top of a positive jet. Negative jets overlying positive
jets seem to be the most unstable. The large black regions, seen to be rising over the
white ellipse near z/δ0 = 10, toward the left of figure 16, subsequently explode into a
patch of turbulence.

The arrow on the left of figure 16 indicates y = δ. Large free-stream eddies are
seen to cross this level in the Rθ = 222 view. They clearly are the origin of the
regions of positive and negative u near the wall; they initiate the streaks. The spacing
between light and dark patches increases downstream, providing evidence that the
streak spacing is selected within the boundary layer. The final data, at Rθ = 403, show
how the disruption penetrates to the wall as the disturbance moves downstream.

3.3. Spectra

Frequency spectra are not usually computed from DNS because they require a long
integration time. The low frequencies, especially, are subject to inaccuracies of short
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Figure 16. End view of the (y, z)-plane. The u component is contoured. Light regions are
positive, dark are negative. The arrow marks the local 99% thickness. Sequence of sections at
Rθ = 222, 331, 364 and 403.

sampling time. The present spectra serve to illuminate characteristics of the laminar
boundary layer response to free-stream turbulence. To that end, they are deemed
sufficiently accurate.

Energy frequency spectra, ∫ ∞
−∞
u(t)u(t+ τ) eiωτ dτ,

at three downstream locations are shown in figure 17. The synthetic inlet spectrum
is that at Rθ = 106. It looks jagged because the number of frequencies included
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Figure 17. Energy spectra, E(ω) at Rθ = 106 ( ), 114 ( ) and 259 ( ). y/δ ∼ 0.25,
showing development of very low frequencies. F = 106ων/U2∞.

at the inlet is small. The lowest frequency in the synthesized inlet spectrum is far
higher than the dominant frequencies in the region of laminar streaks, represented
by the spectrum at Rθ = 259. Frequencies below those introduced at the inlet are
generated by nonlinear interactions. The dominant frequencies at Rθ = 259 are below
F ≡ 106ων/U2∞ = 40. These frequencies were not present at the inlet. The fact
that they rapidly become dominant shows the laminar boundary layer to be highly
responsive at these frequencies. This answers a question that has been debated in
connection with laminar region streaks: are they caused by the externally imposed
disturbance, or are they an implicit property of the boundary layer? The answer seems
clear: while broad-band, free-stream turbulence of sufficient amplitude is a critical
input, frequency selection occurs within the boundary layer; streaks are an implicit
property of the boundary layer.

The spanwise spatial spectrum,∫ ∞
−∞
u(z)u(z + ζ) eiβζ dζ,

shows a similar shift toward low wavenumbers downstream of the inlet. The inlet spec-
trum is broad. Energy rapidly focuses into low-wavenumber modes with downstream
distance. The contours in figure 18 are restricted to the low-wavenumber region. At
the inlet there is almost no energy in this range. For purposes of display the very
low-energy region at the inlet (Rθ ≈ 100) is shown in grey; it is not consistent with
the contouring in the rest of the figure (it is actually coloured yellow). The zone of
maximum E has been highlighted as an encircled patch of white in the lower, central
part of the figure. The contours show that a selection process causes the spectrum to
peak near βδ ∼ 1.4 and Rθ ∼ 360. The y variation plotted in Jacobs (1999) shows
that the long-wavelength energy is highest in the lower half of the boundary layer,
with its maximum at about y/δ ∼ 0.3.

The dominant wavelength βδ ∼ 1.4 is roughly consistent with the optimal growth
hypothesis of Butler & Farrell (1992), Andersson et al. (1999) and others. Shear
amplification causes non-modal growth of streamwise elongated disturbances, but
does not select a spanwise wavelength. When viscous dissipation is added, short
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Figure 18. Contours of E(β; x) in the streak region, showing selection of spanwise wavelength.
y/δ0 = 0.8; F = 11. The grey shading to the left is a region of very low E.

spanwise wavelengths decay. The hypothesis of Butler & Farrell (1992) and Andersson
et al. (1999) is that at any downstream position the observed disturbance will be that
which experiences maximum growth from the inlet to the observation point, under
the combined action of shear amplification and viscous decay. A band of dominant
wavelengths is selected by this mechanism. The band of wavelengths permits the
streak field to be chaotic with the impression of a spanwise period, as in illustrations
presented in § 3.2. Our data and these theories support a conclusion that the dominant
wavelength is selected by the boundary layer and is not sensitive to the details of the
inlet disturbance, provided that it is broad band. Given a broad-band inlet, difference
wavenumbers created by nonlinearity fill in the long-wavelength spectrum.

It should be emphasized, however, that the dominant β, or the averaged streak
spacing, plays little role in bypass transition. The instantaneous field of backward jets
is highly irregular (figure 15) and spot inception occurs locally on isolated jets.

4. Higher inlet turbulence
Auxilliary simulations were performed with an inlet turbulence intensity of 7%.

The inlet boundary layer thickness was Rθ = 51, and the grid dimensions were
1024× 240× 128. The decay exponent of the free-stream intensity was n = 0.79, a bit
higher than n = 0.71 for the Tu = 3.5% case. Further details are contained in Jacobs
(1999).
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Only limited results will be presented for this case. Transition took place fairly close
to the inflow boundary. However, the flow development did not show contamination
by spurious coupling between free-stream turbulence and boundary layer fluctuations
at the inlet. Figure 19 shows skin friction versus Rθ for the 7% case. Although a
high level of Cf exists in the buffeted boundary layer, a clear transition takes place
farther downstream near Rθ = 200. The experimental data are from case T3b of
Roach & Brierly (1990). The laboratory data follow the laminar line quite closely in
the upstream, buffeted region, unlike the DNS.

Distinct spots are difficult to discern under the elevated free-stream turbulence
(figure 20). Nevertheless, transition in the higher intensity case follows a course similar
to that described previously, although in a higher level of ambient disturbance. The
streaks and backward jets remain and the jets still provide the critical path for small-
scale disturbances to enter the boundary layer and provoke transition. However, now
these mechanisms take place in a high level of ambient disturbance.

Figure 20 is a slice through the flow near to the wall. Part (a) shows that long
streaks of positive and negative u are present; positive jets are the more intense
because this plane is near the surface. Regions of irregular motion can be seen in the
vector plot: these occur at the lower left, central and upper right and in the middle of
the figure. So there are at least four turbulent spots between Rθ = 125 and Rθ = 265.
At the lower intensity we have never seen more than one spot in a region this small.

Spots appear to form, but there are more of them per unit area and they merge with
each other at an early stage. Figure 20(b) is a magnified view of the spot at right centre
of the upper plot. It suggests a similar type of disruption to that seen at lower intensity.

The increased area density of spots with increased turbulence intensity suggests
that there is a threshold amplitude for spots to form. This is a telling observation: it
implies that the breakdown involves a nonlinear instability process. The higher level
of free-stream disturbance overcomes the instability threshold more frequently than
in the lower intensity case.

5. Conclusion
These direct simulations are essentially experiments, albeit performed on a com-

puter. Extensive grid refinement studies give confidence that the results are not
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(a)

(b)

Figure 20. Streaks and spots with 7% FST. Inlet Rθ = 125, y/δ = 0.24 (y+ = 14.3); exit Rθ = 265,
y/δ = 0.11 (y+ = 12.7). (a) Velocity vectors in the (x, z)-plane. (b) A zoom of the spot at right
centre.

contaminant by finite domain width or by inadequate grid resolution. In addition to
the refinement studies presented here, Jacobs (1999) reports full domain simulations
on coarser meshes. The most sensitive quantity is skin friction: a simulation with 1536
points in the streamwise direction slightly overpredicted Cf in the turbulent region;
figure 4 shows that with 2048 points it has become quite accurate. Within the bounds
implied by these checks, our results can be considered experimentally accurate.

Laboratory experiments have not completly elucidated the mysterious bypass mech-
anisms. The present data provide a more comprehensive picture. The process has
several subtleties. Long streaks of streamwise velocity perturbation are initiated by
penetration of low-frequency modes from the free-stream. Their spectrum evolves
and a new spectrum with energy dominated by quite low frequencies is established
through nonlinearity. This seems to be a selection process that occurs in the shear
layer, and that removes sensitivity to details of the inlet spectrum.

The near-wall streaks do not undergo instability; indeed they seem to be remarkably
stable as long as they remain in the lower part of the boundary layer. However, when
upwelling lifts them from the surface they become a receptivity site for smaller scale
free-stream turbulence which initiates an instability near the top of the boundary layer.
This disturbance grows rapidly, filling the boundary layer with a patch of irregular
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motion. Subsequently this local breakdown becomes recognized as a turbulent spot.
The spots continue to grow until they merge with the downstream, fully turbulent
region. Merging maintains the upstream edge of the turbulent region.

One might wonder whether there is any connection between the laminar and
turbulent region streamwise velocity streaks. It might not be clear from the data
presented herein, but the streaks are disrupted at transition and those which appear
in the fully turbulent zone are not a continuation from upstream.

This work was supported by the Office of Naval Research, grant #N00014-99-1-
0300.
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